9,937 research outputs found

    Ferrofluidic plug flow heat transfer enhancement

    Get PDF
    Overheating of power electronic devices has become a significant issue due to their continued miniaturization and increased heat flux that needs to be dissipated. Microchannel heat sinks utilising two-phase flow are capable of very high heat transfer rates and represent a possible means of cooling such devices. In this paper, we focus on two-phase liquid-liquid plug flow using water-based ferrofluid (magnetic nanofluid) plugs as the dispersed phase and silicone oil as the continuous phase. An external magnetic field was applied to generate enhanced mixing of the microfluidic flow. We show that material properties of the ferrofluid plug influences heat transfer properties of the microfluidic flow, and demonstrate that cooling performance is further enhanced by the application of an external magnetic field which induces mixing. We also show that microchannel heat transfer using a ferrofluid is superior to that using de-ionized water as the dispersed phase for two-phase liquid-liquid plug flow

    The beta function of the multichannel Kondo model

    Full text link
    The beta function of the multichannel Kondo model is calculated exactly in the limit of large spin N and channel number M=gamma*N, with constant gamma. There are no corrections in any finite order of 1/N. One zero is found at a finite coupling strength, showing directly the Non--Fermi liquid behavior of the model. This renormalization group flow allows to introduce a variational principle for the entropy, to obtain the low temperature thermodynamics. Such in particular the low temperature thermodynamics of the non--crossing approximation to the Kondo model becomes accessible.Comment: 4 page

    Mutual visibility by luminous robots without collisions

    Get PDF
    We consider the Mutual Visibility problem for anonymous dimensionless robots with obstructed visibility moving in a plane: starting from distinct locations, the robots must reach, without colliding, a configuration where no three of them are collinear. We study this problem in the luminous robots model, in which each robot has a visible light that can assume colors from a fixed set. Among other results, we prove that Mutual Visibility can be solved in SSynch with 2 colors and in ASynch with 3 colors. If an adversary can interrupt and stop a robot moving to its computed destination, Mutual Visibility is still solvable in SSynch with 3 colors and, if the robots agree on the direction of one axis, also in ASynch. As a byproduct, we provide the first obstructed-visibility solutions to two classical problems for oblivious robots: collision-less convergence to a point (also known as near-gathering) and circle formation

    Mask-free laser lithography for rapid and low-cost microfluidic device fabrication

    Get PDF
    Microfluidics has become recognized as a powerful platform technology associated with a constantly increasing array of applications across the life sciences. This surge of interest over recent years has led to an increased demand for microfluidic chips, resulting in more time being spent in the cleanroom fabricating devices using soft lithography—a slow and expensive process that requires extensive materials, training and significant engineering resources. This bottleneck limits platform complexity as a byproduct of lengthy delays between device iterations and affects the time spent developing the final application. To address this problem, we report a new, rapid, and economical approach to microfluidic device fabrication using dry resist films to laminate laser cut sheets of acrylic. We term our method laser lithography and show that our technique can be used to engineer 200 ÎŒm width channels for assembling droplet generators capable of generating monodisperse water droplets in oil and micromixers designed to sustain chemical reactions. Our devices offer high transparency, negligible device to device variation, and low X-ray background scattering, demonstrating their suitability for real-time X-ray-based characterization applications. Our approach also requires minimal materials and apparatus, is cleanroom free, and at a cost of around $1.00 per chip could significantly democratize device fabrication, thereby increasing the interdisciplinary accessibility of microfluidics

    Poisson-de Rham homology of hypertoric varieties and nilpotent cones

    Get PDF
    We prove a conjecture of Etingof and the second author for hypertoric varieties, that the Poisson-de Rham homology of a unimodular hypertoric cone is isomorphic to the de Rham cohomology of its hypertoric resolution. More generally, we prove that this conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and only if it holds in degree zero for all normal slices to symplectic leaves. The Poisson-de Rham homology of a Poisson cone inherits a second grading. In the hypertoric case, we compute the resulting 2-variable Poisson-de Rham-Poincare polynomial, and prove that it is equal to a specialization of an enrichment of the Tutte polynomial of a matroid that was introduced by Denham. We also compute this polynomial for S3-varieties of type A in terms of Kostka polynomials, modulo a previous conjecture of the first author, and we give a conjectural answer for nilpotent cones in arbitrary type, which we prove in rank less than or equal to 2.Comment: 25 page

    A Categorical Clustering of Publishers for Mobile Performance Marketing

    Get PDF
    Mobile marketing is an expanding industry due to the growth of mobile devices (e.g., tablets, smartphones). In this paper, we explore a categorical approach to cluster publishers of a mobile performance market, in which payouts are only issued when there is a conversion (e.g., a sale). As a case study, we analyze recent and real-world data from a global mobile marketing company. Several experiments were held, considering a first internal evaluation stage, using training data, clustering quality metrics and computational effort. In the second stage, the best method, COBWEB algorithm, was analyzed using an external evaluation based on business metrics, computed over test data, and that allowed an identification of interesting clusters.This article is a result of the project NORTE-01-0247-FEDER- 017497, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT Funda ̧ca ̃o para a Ciˆencia e Tecnologia within the Project Scope: UID/CEC/00319/2013

    Spatiotemporal correlations of handset-based service usages

    Get PDF
    We study spatiotemporal correlations and temporal diversities of handset-based service usages by analyzing a dataset that includes detailed information about locations and service usages of 124 users over 16 months. By constructing the spatiotemporal trajectories of the users we detect several meaningful places or contexts for each one of them and show how the context affects the service usage patterns. We find that temporal patterns of service usages are bound to the typical weekly cycles of humans, yet they show maximal activities at different times. We first discuss their temporal correlations and then investigate the time-ordering behavior of communication services like calls being followed by the non-communication services like applications. We also find that the behavioral overlap network based on the clustering of temporal patterns is comparable to the communication network of users. Our approach provides a useful framework for handset-based data analysis and helps us to understand the complexities of information and communications technology enabled human behavior.Comment: 11 pages, 15 figure

    Controlling light-with-light without nonlinearity

    Full text link
    According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorbtion of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators
    • 

    corecore